RJPrimers: unique transposable element insertion junction discovery and PCR primer design for marker development

نویسندگان

  • Frank M. You
  • Humphrey Wanjugi
  • Naxin Huo
  • Gerard R. Lazo
  • Ming-Cheng Luo
  • Olin D. Anderson
  • Jan Dvorak
  • Yong Qiang Gu
چکیده

Transposable elements (TE) exist in the genomes of nearly all eukaryotes. TE mobilization through 'cut-and-paste' or 'copy-and-paste' mechanisms causes their insertions into other repetitive sequences, gene loci and other DNA. An insertion of a TE commonly creates a unique TE junction in the genome. TE junctions are also randomly distributed along chromosomes and therefore useful for genome-wide marker development. Several TE-based marker systems have been developed and applied to genetic diversity assays, and to genetic and physical mapping. A software tool 'RJPrimers' reported here allows for accurate identification of unique repeat junctions using BLASTN against annotated repeat databases and a repeat junction finding algorithm, and then for fully automated high-throughput repeat junction-based primer design using Primer3 and BatchPrimer3. The software was tested using the rice genome and genomic sequences of Aegilops tauschii. Over 90% of repeat junction primers designed by RJPrimers were unique. At least one RJM marker per 10 Kb sequence of A. tauschii was expected with an estimate of over 0.45 million such markers in a genome of 4.02 Gb, providing an almost unlimited source of molecular markers for mapping large and complex genomes. A web-based server and a command line-based pipeline for RJPrimers are both available at http://wheat.pw.usda.gov/demos/RJPrimers/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat.

In hexaploid wheat (Triticum aestivum L.) (AABBDD, C=17 000 Mb), repeat DNA accounts for approximately 90% of the genome, of which transposable elements (TEs) constitute 60%-80%. Despite the dynamic evolution of TEs, our previous study indicated that the majority of TEs are conserved and collinear between the homologous wheat genomes, based on identical insertion patterns. In this study, we exp...

متن کامل

Long PCR-based technique for detection of transposon insertions in and around cloned genes of Drosophila melanogaster.

A technique to detect a transposable element insertion greater than 5 kb away from a given gene-specific site is described. PCR is performed on genomic DNA isolated from a pool containing one heterozygous mutant fly, carrying an amplifiable allele, within a pool of 100 flies with no amplifiable sequences. A model procedure for optimizing PCR conditions and a test for primer ability to amplify s...

متن کامل

Fot 1 insertions in the Fusarium oxysporum f. sp. albedinis genome provide diagnostic PCR targets for detection of the date palm pathogen.

Populations of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease of date palm, are derivatives of a single clonal lineage and exhibit very similar Fot 1 hybridization patterns. In order to develop a sensitive diagnostic tool for F. oxysporum f. sp. albedinis detection, we isolated several DNA clones containing a copy of the transposable element Fot 1 from a genomic library...

متن کامل

High-throughput linkage analysis of Mutator insertion sites in maize.

Insertional mutagenesis is a cornerstone of functional genomics. High-copy transposable element systems such as Mutator (Mu) in maize (Zea mays) afford the advantage of high forward mutation rates but pose a challenge for identifying the particular element responsible for a given mutation. Several large mutant collections have been generated in Mu-active genetic stocks, but current methods limi...

متن کامل

Splinkerette PCR for Mapping Transposable Elements in Drosophila

Transposable elements (such as the P-element and piggyBac) have been used to introduce thousands of transgenic constructs into the Drosophila genome. These transgenic constructs serve many roles, from assaying gene/cell function, to controlling chromosome arm rearrangement. Knowing the precise genomic insertion site for the transposable element is often desired. This enables identification of g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010